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Abstract

Combining mass and energy balances, a differential equation for the profile of a liquid wedge underneath a vapour
bubble that is growing on a solid surface is derived. It connects the spatial and temporal changes of the film (wedge)
thickness with the spatial temperature changes and velocity of liquid at the interface. Specifying particular conditions,
the equation reduces to those from the literature. The paper brings further an illustrative explanation of why the wall
heat flux in the wedge region may reverse its direction. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many of the recent publications have substantially
contributed to our better understanding of bubble
physics, and in particular those of Welch [1], Wilson
et al. [2], and Son et al. [3], all appeared in the last two
years. Welch [1] has performed a direct numerical sim-
ulation of a single vapour bubble. Assuming a physical
system, consisting of a solid wall, a liquid pool and a
vapour bubble that is adhering to the wall surface, first
to be at equilibrium, he increased jumpwise the system
temperature (all three phases). The bubble growth thus
initiated develops a temperature field, which allows a
heat flow from the liquid to the wall in a certain region
of the liquid-wall interface. Although obtained under
adiabatic conditions of the whole system and, in
addition, at a pinned three-phase-line (TPL, liquid—va-
pour-solid), Welch’s results become essential, if we are
to imagine what might happen around a vapour bubble
growing on a heating surface. The picture he obtained is
directly applicable to nucleate boiling, at least in the case
of a low spatio-temporally averaged wall heat flux.

By numerical experiments, Wilson et al. [2] have
demonstrated, among other things, that the interface of
a two-dimensional (cylindrical) vapour bubble sand-
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wiched between two isothermal superheated parallel
plates is convex near the TPL. This line was not pinned
on the plate surface, but was allowed to move as the
bubble grows. During the whole observation time
period, the interface preserves its convex shape in the
TPL region. When evaluated in terms of boiling under
real conditions, this finding does not seem to be seri-
ously affected by the assumption of the bubble to be
cylindrical and the plates to be isothermal. Finally, Son
et al. [3] have shown numerically that the bubble de-
tachment occurs via a necking process. Also in this case
the constant wall temperature taken for simulation does
not materially affect the bubble necking.

The results reported in the above-mentioned papers
confirm earlier notions about the bubble behaviour. On
the basis of a qualitative reasoning, the author of the
present paper has stated [4-8] that
e the vapour-liquid interface of a growing bubble is

concave—convex at the TPL,

o the wall heat flux may locally reverse its direction and
the heat flows from the liquid to the wall,
the bubble detachment occurs via necking,

e the vapour rest remaining on the wall after the bub-
ble break-off, exposed to a strong action of the La-
place pressure, may condense. The fate of this
vapour rest affects the waiting period of the next bub-
ble.

It has further been concluded that the movement

(expansion) of the TPL during the bubble growth is
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Nomenclature

A area

0A interfacial area element
Cp specific heat capacity

h specific enthalpy
Ah latent heat

m mass flux
oM mass flow rate
q heat flux vector

¢%,q" ¢ and 5 heat flux components

50 heat flow rate

R, S mass and heat flow terms arising from wedge
slope

T temperature

t time

TPL three-phase-line

u,v ¢ and 5 velocity components

V volume

Ww velocity vector

Greek symbols

0 film thickness

K thermal diffusivity

A thermal conductivity

n axial coordinate

o density

IS radial coordinate
Subscripts

L liquid

v vapour

t derivation with respect to t
A% at wall surface

0 at film surface

n derivation with respect to n
IS derivation with respect to &
Superscripts

n component in # direction

14 component in ¢ direction

preceded by a rapid evaporation of liquid molecules
making this line, whereas the contraction of the TPL
during the bubble detachment does not allow any reli-
able determination of its length and the contact angle in
a simple way [5,7]. These quantities become fundamental
if the bubble detachment is discussed in terms of a force
balance, which is sometimes called “Tate’s law”, see
Tate [9], Mitrovic [5], Lubetkin [10]. As it is now be-
lieved, a force balance does not adequately mimic the
detachment of a capillary body (vapour bubble, liquid
droplet), and in this context a further source deserves, at
least historically, to be mentioned. Quarter of a millen-
nium ago, about 1748, Boscovich [11] has precisely de-
scribed the break-off of a hanging droplet via the
necking process, ! which is immediately applicable to a
vapour bubble.

While closing this brief literature review, we should
remark that Ilyin et al. [12] have observed experimen-
tally a negative wall heat flux during bubble growth. The
experiments have been performed with water at atmo-
spheric pressure, at a relatively low wall heat flux of
35.8 kW/m?, a wall temperature of 110.5°C, and a water
bulk temperature of 99.5°C. The authors state:

... Secondly, interference fringe pattern in the thin
liquid layer beneath the bubble shows the direction
of local heat flux not only from the liquid wedge to
the bubble, but also from the liquid to the sub-
cooled metal in certain stages of the vapour bubble
growth.

An explanation of this phenomenon is not given in
their paper. The possible shapes of the isotherms in the

region of the heat flux reversal, discussed in [6], are
qualitatively in agreement with the ones reported by
Welch [1]. Although physically of great consequence
and scientifically highly exciting, it is curious that no
publication devoted to modelling and numerical treat-
ment of bubble growth does mention the Ilyin et al.
results.

The present paper was motivated by the analysis of
Wilson et al. [2]. Our main aim is to derive a differential

! As Boscovich’s [11] notion applies to any capillary body
and, in addition, possesses a certain historical value, I cite from
434 of the second edition of the Theoria:

... in the case of drops of water hanging suspended;
here, as soon as they have increased up to a point where
the weight of the whole drop becomes greater than the
mutual attractive force of its parts, any greater part is not
torn away as a whole, but by degrees, though in a time
that is exceedingly short, the drop is attenuated at its
upper part, until the neck, which has by now become
exceedingly narrow, is finally broken altogether. There
were, say, initially, a thousand particles in the surface
connecting the hanging drop to the upper part of the
water which is left adhering to the body from which the
drop was suspended; these a little afterwards become 900,
then 800, then 700, & so on, their number being gradually
diminished as the sides of the neck approach one another,
& its figure is narrowed.

The process of droplet detachment is one of many ex-
amples Boscovich has taken to illustrate his notion upon
mutual interactions between elementary particles of
matter.
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expression for the profile of the liquid wedge underneath
a growing bubble. In the case of a two-dimensional,
infinitely long cylindrical bubble, such an equation is
easily deducible from the results of Wilson et al. [2].
Here, we assume a rotationally symmetrical vapour
bubble and first derive expressions for the interfacial
mass and heat fluxes; then, we combine them to a dif-
ferential equation that describes the wedge profile.
Contrary to Son et al. [3], we do not employ any lu-
brication hypothesis; this will make it possible to iden-
tify further terms that affect the unsteady-state wedge
shape. From this point of view, the present paper sup-
plements the analytical considerations reported in [8];
also here, we do not pursue any numerical evaluations.
Included in the paper is a brief model discussion that
should visualize the origin of the negative wall heat flux
during the bubble growth.

2. Mass and energy balances and the wedge profile
2.1. Mass balance and interfacial mass flux

The model adopted is sketched in Fig. 1. Shown is a
rotational-symmetrical vapour bubble that is growing
on an ideally smooth, superheated wall surface. The
black dots represent the TPL; this line borders a cir-
cular area, across which the vapour interacts with the
wall. Our attention is focussed on an element of the
liquid wedge that is sandwiched between the vapour
and the wall surface outwards the TPL; the control
volume is extended by the element d¢ along the radial
axis of a cylindrical coordinate system, the axial coor-
dinate of which coincides with the axis of bubble
symmetry.

The mass balance for the control volume can be
written as

0 o - .
3 /Vpde f/A (pw, dA) — oM, (1)
Tv, q"
INTERFACE, 6(& )

LQuiD u, qf

BUBBLE
LIiQuiD

l |
HEATING WALL § m &+dg
0Qypy

Fig. 1. Physical model illustrating a wedge-shaped liquid region
along the rim of the vapour-wall interaction surface.

where ¢ denotes the time, p the liquid density, w the
velocity vector, d4 the surface element and M the mass
flow rate across the vapour—liquid interface. The surface
integral must, therefore, not be applied to the vapour—
liquid portion of the control surface.

With dV =2rédédy, d4 =2nédy and p = const,
Eq. (1) gives

°9d
2mp (5@ +us0:¢ + / R (ué)dn) dé
0
= —0M; +R, (2)

where the subscripts t and ¢ attached to the film
thickness ¢ indicate its partial derivatives with respect
to these variables, and the index o refers to the vapour—
liquid interface. The quantity R stands for further
terms arising from the fact that the film surface is not
parallel to the plane n = 0, but is sloped. For simplic-
ity, however, this quantity is considered to be small and
omitted within the present paper. The error thus in-
troduced is negligible in the most wedge region, but not
necessarily at the TPL with a large surface curvature
[8].

Involving the equation of continuity at p = const
0

ov o
é$+&(§”)_0 (3)

and taking the velocity u to depend parametrically on
the film thickness 0, the integral in Eq. (2) can be solved
to give

OM; = —2mp (0, + usd; — v;)EdE. “4)
Defining a mass flux 7; at the interface by
thsdA; = SM;, (5)

where 0A4; 1s the size of the interfacial area,
045 = 2n(1 + 07)'ede, we get

~1/2

s = —p (8¢ + usd; — v;) (1 + 37) (6a)
or

. 38 38 Lo\ 12

s —*P<a+uaafé*05> <1+(65/6g) ) : (6b)

This equation has the same shape as the one reported by
Wilson et al. [2] for a cylindrical vapour bubble, see also
Burelbach et al. [13].

For a vapour-liquid interface parallel to the wall
surface, we have 0; = 00/0¢ = 0, and Eq. (6a) reduces to
ms = —p(dy — vs). For an interface orthogonal to the
wall surface, d; = 00/0& — oo, resulting in sy = —pus,
if both the axial velocity and the local change of the film
thickness are finite.



412 J. Mitrovic | International Journal of Heat and Mass Transfer 45 (2002) 409415

2.2. Energy balance and interfacial heat flux

In order to derive an expression for the interfacial
heat flux ¢;, we will start from the energy balance. Re-
ferring to Fig. 1, we may write

a o - . .
&/VPCPT dV=f/A (q,dA> —00; + 60w, (7)

where g is the energy flux vector, T is the temperature,
and 80;s and 00y are the heat flow rates at the interface
and the wall surface, respectively. Note that the enth-
alpy and temperature in the reference state are taken to
be zero.

Proceeding as above for the mass flux sz, we obtain

J
2n (pcpT(;éth +q:E+ /0 (pcpff += ( f)) ) d¢é
=—80; + 00w + S, (8)

where S, like R in Eq. (2), arises from the slope of
the film surface. We also neglect the quantity S in the
present discussion.

Since the physical properties are constant, the local
energy balance may be written as

pent 5y + 52 (1) =~ 5 (019, ©)

so that for the heat flux ¢" considered to be an implicit
function of § the integral in Eq. (8) can be solved to give

2n(pcp7'l;5tf + q§5§ - qz + ‘I?N)édé
_ 50, + 60 (10

In Eqgs. (8)-(10), the superscripts 1 and & refer to the

radial and axial directions of the coordinate system,

respectively, and the index W to the wall surface.
Introducing an interfacial energy flux ¢; by

45045 = 60, (11)
and considering the relation 6Qw = 2ngl,EdE, we get the
expression

g5 = —(perTyd+ q50: — ) (1 4+ 02", (12)

which is explicitly independent of the heat flux on the
wall. This equation allows an interesting conclusion,
namely, the capacity term in the parenthesis results in a
larger heat flux g; when at 6, = 86/0¢ < 0 the saturation
temperature (pressure) is increased. This relationship
explains at least partly why the heat flux in nucleate
boiling sensitively increases with increasing pressure.

2.3. Differential expression for the wedge profile

To derive a differential equation for the film profile,
we will start with Eq. (12). The components g5 and ¢} of

the interfacial energy flux vector in this equation are to
be obtained from

oT .
q; = _/16_5 + pushy = —AT: + pushy, (13)
oT
q; = /167 pvshy = — AT, + pvshy, (14)
hy being the liquid enthalpy (i = ¢,T), so that
1/2

(15)

Insisting on a continuity of the energy flux across the
vapour-liquid interface, we may write

g5 =—(p(di +usd: — vs)h — A(T:0: = T;) ) (1 “'52)

g5 = fishy (16)

where Ay is the enthalpy of vapour leaving the inter-
face. Note that Eq. (16) disregards a possible temper-
ature gradient in the vapour. This is allowable in most
cases, but requires, in a strict sense, an isothermality of
the interface. We will return to this question further
below.

Combining Egs. (6a), (15) and (16) and setting
Ah = hy — hy, gives

A

5t+u(3(35—v(3+(T555—T,7)pTh:07 (1721)
or

% 0 T oT\ 4

T R DA 1
o T e ””(ag ¢ Gn)pAh 0, (17b)

which describes the film profile and specifies the spatio-
temporal conditions at the interface to be satisfied by
the flow and temperature fields within the liquid wedge.
Note that also the boundary conditions demanded by
the momentum equation are implicitly included in Egs.
(17a) and (17b) via the interfacial velocity components
us and vs. For a detailed analysis of the later condi-
tions, the reader is referred to the article by Wilson
et al. [2].

Eqgs. (17a) and (17b) allows constructions of several
model cases. The simplest one is deduced by assuming
the liquid in the wedge to be at rest, us = v; = 0. Then,

28 on ) phn (18)

which basically belongs to the family of the so-called
Stefan problems; in this case, the movement of the in-
terface occurs only by phase change.

For a steady-state case, Eqs. (17a) and (17b) simpli-
fies to

A 0T\ 00 or
(O S e R

9o (6T65 8T> A
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from which for the temperature 7" assumed to be inde-
pendent of &, we obtain

(M;%? — U,s) pAh — AZ% =0. (20)
Eq. (19) is immediately applicable to evaporation at free
liquid menisci frequently occurring e.g., in grooves of
heat pipes, where the profile of the vapour-liquid in-
terface is “frozen” in time. However, as a rule, Eq. (19)
is not used there, but the one resting on the so-called
lubrication theory. In this context the reader is referred
to the recent review paper by Wayner [14] and references
therein. Some bubble growth models from the literature
use even the simpler Eq. (20). On the basis of this
equation it has been reasoned in [8] that the liquid wedge
at the TPL, where for no sliding conditions at the wall
surface both velocity components became zero, is con-
cave—convex. This is in agreement with the numerical
results by Wilson et al. [2].

To deduce from Egs. (17a) and (17b) the expression
reported by Son et al. [3] (Eq. (5) in [3]), one has to take
0T/on to be constant over the film thickness
(0T /on = —q/ %, q being the wall heat flux) and to set
0T /o0& = 0. In addition, the term (vs — us00/0&) has to
be identified as the velocity normal to the vapour-liquid
interface, which is allowable for relatively flat films
(06/0¢ — 0) only.

Prior to proceeding to discuss the origin of a negative
wall heat flux in the region of the TPL of a growing
bubble, let us make two remarks. First, the expressions
(6a), (15) and (17a) and (17b) for the interfacial mass
and heat fluxes, are also valid for a two-dimensional
(Cartesian) wedge, in which case ¢ and n become the
Cartesian coordinates. The results of Wilson et al. [2]
are, therefore, applicable to vapour bubbles having the
shape depicted in Fig. 1. Second, all the above consid-
erations are confined to the liquid phase only. As a
consequence, we get from Eqgs. (17a) and (17b) at the
thermodynamic critical point (A# = 0) of the fluid the
expression
oras_ar_, o
oL o oy
which — within our model — states that a control surface
replacing the former vapour—liquid interface is adiabatic
at this point. By contrast, Eq. (15) allows correctly a
heat flow across such surface.

In order to derive a more general equation it suffices
to extend the control volume in Fig. 1 into the vapour
phase. Then, from a mass balance, we obtain

) )
APE + (prucs — pyitvs) 6_5 — (pLvLs — pyUvs)
—o, (22)

whereas an energy balance gives

00, 00 (3T Av Ty 00
or " Moge T UL 8¢ 1 oF )oc

_(E_’L"aﬂ)) 1 —0. (23)
o AL Oy pLAh

The indices L and V added to the variables in Egs. (22)
and (23) should discriminate between the two phases.
These equations are identically satisfied at the thermo-
dynamic critical point. Note that in Eq. (23), like in Egs.
(17a) and (17b), the temperature derivatives are to be
obtained at the vapour-liquid interface. For a steady-
state evaporation at a planar liquid film (86/0¢ = 0), Eq.
(22) expresses the continuity of the mass flux across the

interface, whereas by omitting the Fourier terms in the
vapour phase, Eq. (23) simplifies to Egs. (17a) and (17b).

3. Reversal of the wall heat flux

Several publications devoted to bubble growth either
adopt steady-state model equations or assume an
isothermal wall surface. Models with such restrictions,
by no means useful in many respects, do not detect some
details, which are important for obtaining a more
complete picture of bubble physics. For instance, the
reversal of the wall heat flux remains inaccessible by
these models.

As mentioned above, Ilyin et al. [12] have shown
experimentally and Welch [1] numerically that the wall
heat flux during a bubble cycle is not uniformly directed
in the bubble influence region, but a plausible explana-
tion of this somewhat puzzling phenomenon has not
been offered yet. The only exception is an earlier try by
the present author [6].

To illustrate the reversal origin of the wall heat flux,
that is, the heat flow from the liquid to the wall within a
certain region of the liquid wedge, let us construct a very
simple model. Our principal idea is associated with the
events occurring at the TPL. When a vapour bubble is
generated on a superheated wall surface and a TPL is
formed, the strong evaporation along this line reduces
instantly the wall superheat along the TPL practically to
zero. The TPL is acting as a circular, radially expanding
line heat sink as the bubble grows. The temperature at
the TPL is mainly governed by the pressure in the
bubble and is expected not to dramatically change dur-
ing the most period of bubble growth. In the consider-
ations to follow, we will assume such a heat sink to be
isothermal and formed along the straight contact line of
three bodies, as shown in Fig. 2. For simplicity the TPL
should be motionless, whereas the vapour as a third
body should not thermally interact with the other two by
supposing the corresponding surfaces to be adiabatic.
First the whole system is taken to be isothermal.

To simulate thermally the bubble birth, we start the
heat sink operation from equilibrium by a jumpwise
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Fig. 2. Illustration of the origin of a heat flux reversal in the course of bubble growth by an isothermal heat sink acting along a TPL.
For simplicity, vapour—body surfaces are adiabatic. (a) When the bodies have the same physical properties, temperature waves gen-
erated at the heat sink propagate in the bodies at the same velocity and there is no heat flux across the contact surface. (b) Bodies of
different physical properties and an adiabatic contact surface. The isotherms are cylindrical surfaces spreading at different velocities in
the bodies. (c) Different bodies interacting thermally across the contact surface. The body II is heated by the body I the latter having a

lower thermal diffusivity x; (e.g., liquid).

reduction of the temperature along the contact line
(TPL). Temperature waves thus initiated penetrate the
bodies I and II. In Fig. 2(a), the physical properties of
these bodies are the same, k; = iy; the temperature
waves leaving the heat sink are, therefore, spreading
cylindrically outwards at the same velocities. As they
arrive at any point of the contact surface of the bodies at
the same time, there is no heat flux across this surface,
which thus behaves as being adiabatic.

In Fig. 2(b), the bodies have different physical
properties (k; # K1), but this time their contact surface
is assumed to be adiabatic. Also in this case, the iso-
therms are cylindrical surfaces, which propagate at dif-
ferent velocities, the propagation velocity being faster in
the body of the higher thermal diffusivity. Finally, we
reject the property of the surface to be adiabatic and
allow the bodies I and II to thermally interact with one
another. In this case, the isotherms will be shaped as
sketched in Fig. 2(c). This shape of the isotherms results
in a heat flow between the bodies, the body with the
larger thermal diffusivity (solid, ki) is receiving the heat
from the body of the lower diffusivity (e.g., liquid, xp).
These isotherms agree qualitatively with the ones de-
duced by Welch [1] from a direct numerical simulation.

This sketch is directly applicable to a growing vapour
bubble at a low initial wall superheat. However, in a
more detailed analysis the sliding of the TPL, the
position of the interface with respect to the wall surface,
the initial non-isothermality of the system as well as the
fact that the bubble at the start acts practically as a point
sink must not be overlooked [6].

4. Concluding remarks
The profile of a wedge-shaped liquid film beneath a

growing vapour bubble is governed both by heat con-
vection and by conduction within the liquid phase. The

differential equation that describes this profile shows the
local change of the film (wedge) thickness to depend on
the interfacial liquid velocity, the spatial film slope and
the temperature gradient on the liquid side of the in-
terface. The expression for the interfacial heat flux, Eq.
(12), derived in this paper, shows this quantity — in
agreement with experiments — to increase with increasing
boiling temperature (pressure) at otherwise constant
conditions. The spatio-temporal development of the
temperature field in the immediate surrounding of the
TPL illustrates why the wall heat flux may reverse its
direction.
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